Advancements in Electrode Materials and Applications: Trends, Challenges, and Future Directions
Kata Kunci:
Electrode materials, Supercapacitors, Advanced applications, Energy storage, Material propertiesAbstrak
In the context of advancing sustainable energy technologies, this comprehensive review paper systematically surveys recent developments in electrode materials for supercapacitors and their corresponding advanced applications. The review highlights the pivotal role of electrode materials in enhancing energy storage and delivery in supercapacitor systems. A meticulous examination of various electrode materials, including carbon-based materials, metal oxides, conducting polymers, and hybrid composites, underscores their distinctive electrochemical properties and performance metrics. The abstractive synthesis of key findings from a wide spectrum of studies illuminates the intricate interplay between material properties, electrochemical behavior, and the resulting supercapacitor performance. The review further delves into the innovative applications that leverage these advanced electrode materials, encompassing fields such as portable electronics, renewable energy integration, and electric vehicles. Through a critical analysis of the current state-of-the-art, this review identifies emerging trends and research gaps in the field, providing valuable insights for future material design, system integration, and performance optimization in the realm of supercapacitor technology. As the world transitions towards cleaner and more sustainable energy solutions, this review offers a comprehensive resource for researchers, engineers, and policymakers working towards harnessing the potential of advanced electrode materials in shaping the future of energy storage and utilization.
Referensi
Tajudin, M.H.A., Ahmad, M.S., Isa, I.M., Hashim, N., Ul-Hamid, A., Saidin, M.I., Zainul, R., Si, S.M. Sensitive determination of uric acid at layered zinc hydroxidesodium dodecyl sulphate-propoxur nanocomposite (2022) Journal of Electrochemical Science and Engineering, 12 (2), pp. 331-341.
Longqian Xu, Yunfeng Mao, Yang Zong, Shuai Peng, Xiaomeng Zhang, Deli Wu. Membrane-Current Collector-Based Flow-Electrode Capacitive Deionization System: A Novel Stack Configuration for Scale-Up Desalination. Environmental Science & Technology 2021, 55 (19) , 13286-13296. https://doi.org/10.1021/acs.est.1c03829
Changyong Zhang, Jinxing Ma, Lei Wu, Jingyi Sun, Li Wang, Tianyu Li, T. David Waite. Flow Electrode Capacitive Deionization (FCDI): Recent Developments, Environmental Applications, and Future Perspectives. Environmental Science & Technology 2021, 55 (8) , 4243-4267. https://doi.org/10.1021/acs.est.0c06552
Wijaya, K., Pratika, R.A., Nadia, A., Rahmawati, F., Zainul, R., Oh, W.C., Saputri, W.D. Recent Trends and Application of Nanomaterial Based on Carbon Paste Electrodes: A Short Review (2023) Evergreen, 10 (3), pp. 1374-1387
Azis, N.A., Isa, I.M., Hashim, N., Ahmad, M.S., Yazid, S.N.A.M., Saidin, M.I., Si, S.M., Zainul, R., Ulianas, A., Mawardi, M., Mukdasai, S. Synergistic effect of zinc/aluminium-layered double hydroxide-clopyralid carbon nanotubes paste electrode in the electrochemical response of dopamine, acetaminophen, and bisphenol A (2020) International Journal of Electrochemical Science, 15 (9), pp. 9088-9107. Cited 4 times.
Johan Nordstrand, Joydeep Dutta. A new automated model brings stability to finite‐element simulations of capacitive deionization. Nano Select 2022, 3 (6) , 1021-1035. https://doi.org/10.1002/nano.202100270
Rui Chen, Xiaoyong Deng, Chuang Wang, Jinying Du, Zhiwei Zhao, Wenxin Shi, Jie Liu, Fuyi Cui. A newly designed graphite-polyaniline composite current collector to enhance the performance of flow electrode capacitive deionization. Chemical Engineering Journal 2022, 435 , 134845. https://doi.org/10.1016/j.cej.2022.134845
Zainul, R., Isa, I.M., Akmar Mohd Yazid, S.N., Hashim, N., Mohd Sharif, S.N., Saidin, M.I., Ahmad, M.S., Suyanta, M.S., Amir, Y. Enhanced Electrochemical Sensor for Electrocatalytic Glucose Analysis in Orange Juices and Milk by the Integration of the Electron-Withdrawing Substituents on Graphene/Glassy Carbon Electrode (2022) Journal of Analytical Methods in Chemistry, 2022, art. no. 5029036, . Cited 4 times.
Sari, T. K., Riga, R. and Zubir, M. (2021) “Pencil Lead Electrode Modified with Gold Thin Layer for Voltammetric Detection of Chromium (VI)”, EKSAKTA: Berkala Ilmiah Bidang MIPA, 22(2), pp. 145-153. doi: 10.24036/eksakta/vol22-iss2/265.
Mohd Yazid, S.N.A., Md Isa, I., Ali, N.M., Hashim, N., Saidin, M.I., Ahmad, M.S., Asiri, A.M., Khan, A., Zainul, R. Graphene/iridium(III) dimer complex composite modified glassy carbon electrode as selective electrochemical sensor for determination of hydroquinone in real-life water samples (2022) International Journal of Environmental Analytical Chemistry, 102 (11), pp. 2607-2624. Cited 2 times.
Nguyen Anh Thu Tran, Tran Minh Khoi, Ngo Minh Phuoc, Hye Bin Jung, Younghuyn Cho. A review of recent advances in electrode materials and applications for flow-electrode desalination systems. Desalination 2022, 541 , 116037. https://doi.org/10.1016/j.desal.2022.116037
Longqian Xu, Liang Tang, Shuai Peng, Yunfeng Mao, Deli Wu. Magnetic array for efficient and stable Flow-electrode capacitive deionization. Chemical Engineering Journal 2022, 446 , 137415. https://doi.org/10.1016/j.cej.2022.137415
Toni, N. P. D. ., Azra, F. and Maahury, M. F. (2022) “Modeling the Relationship of Net Atomic Charge with the Activity of 5-Aminopyrazole Derivative Compounds as Antioxidants with AM1 Method”, EKSAKTA: Berkala Ilmiah Bidang MIPA, 23(04), pp. 242-254. doi: 10.24036/eksakta/vol23-iss04/334.
K. Brökelmann, N. Köller, C. Linnartz, J. Hao, M. Wessling. Lithium recovery and concentration by flow‐electrode capacitive deionization for a sustainable use of lithium‐ion batteries. Chemie Ingenieur Technik 2022, 94 (9) , 1369-1370. https://doi.org/10.1002/cite.202255383
M.Z., Zainul, R., Kamari, A. The effect of swellable carboxymethyl cellulose coating on the physicochemical stability and release profile of a zinc hydroxide nitrate–sodium dodecylsulphate–imidacloprid (2021) Chemical Physics Impact, 2, art. no. 100017, . Cited 3 times.
Yulis, R., Zainul, R., Mawardi, M. Effect of natrium sulphate concentration on indoor lights photovoltaic performance (2019) Journal of Physics: Conference Series, 1185 (1), art. no. 012019, . Cited 4 times.
Suyanta, Sunarto, Padmaningrum, R.T., Karlinda, Isa, I.M., Rahadian. Development of voltammetry analysis method of copper metal ions by solid-state membrane with carbon nanotube (2021) Indonesian Journal of Chemistry, 21 (2), pp. 332-339.
Mohammad A. Alkhadra, Xiao Su, Matthew E. Suss, Huanhuan Tian, Eric N. Guyes, Amit N. Shocron, Kameron M. Conforti, J. Pedro de Souza, Nayeong Kim, Michele Tedesco, Khoiruddin Khoiruddin, I Gede Wenten, Juan G. Santiago, T. Alan Hatton, Martin Z. Bazant. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chemical Reviews 2022, 122 (16) , 13547-13635. https://doi.org/10.1021/acs.chemrev.1c00396
Xitong Liu, Sneha Shanbhag, Timothy V. Bartholomew, Jay F. Whitacre, Meagan S. Mauter. Cost Comparison of Capacitive Deionization and Reverse Osmosis for Brackish Water Desalination. ACS ES&T Engineering 2021, 1 (2) , 261-273. https://doi.org/10.1021/acsestengg.0c00094
Ahmad, M.S., Isa, I.M., Hashim, N., Saidin, M.I., Si, S.M., Zainul, R., Ulianas, A., Mukdasai, S. Zinc layered hydroxide-sodium dodecyl sulphate-isoprocarb modified multiwalled carbon nanotubes as sensor for electrochemical determination of dopamine in alkaline medium (2019) International Journal of Electrochemical Science, 14 (9), pp. 9080-9091. Cited 7 times.
Longqian Xu, Chao Yu, Shiyu Tian, Yunfeng Mao, Yang Zong, Xiaomeng Zhang, Bing Zhang, Changyong Zhang, Deli Wu. Selective Recovery of Phosphorus from Synthetic Urine Using Flow-Electrode Capacitive Deionization (FCDI)-Based Technology. ACS ES&T Water 2021, 1 (1) , 175-184. https://doi.org/10.1021/acsestwater.0c00065
Syafei, N. S., Hidayat, D., Emilliano, E. and Men, L. K. (2018) “Analysis Cracking Corrosion on Carbon Steel Pipes API 5L-X65 In Solution 7700 ml Aquades, 250 ml Acetic Acid and 50 ml Ammonia with Gas CO2 and H2S in Saturation Condition”, EKSAKTA: Berkala Ilmiah Bidang MIPA, 19(2), pp. 21-31. doi: 10.24036/eksakta/vol19-iss2/138.
Sharif, S.N.M., Hashim, N., Isa, I.M., Bakar, S.A., Saidin, M.I., Ahmad, M.S., Mamat, M., Hussein, M.Z., Zainul, R., Kamari, A. The effect of swellable carboxymethyl cellulose coating on the physicochemical stability and release profile of a zinc hydroxide nitrate–sodium dodecylsulphate–imidacloprid (2021) Chemical Physics Impact, 2, art. no. 100017, . Cited 3 time
Johan Nordstrand, Joydeep Dutta. An Extended Randles Circuit and a Systematic Model-Development Approach for Capacitive Deionization. Journal of The Electrochemical Society 2021, 168 (1) , 013502. https://doi.org/10.1149/1945-7111/abd82f
Sharif, S.N.M., Hashim, N., Isa, I.M., Bakar, S.A., Saidin, M.I., Ahmad, M.S., Mamat, M., Hussein, M.Z., Zainul, R. Polymeric Nanocomposite-Based Herbicide of Carboxymethyl Cellulose Coated-Zinc/Aluminium Layered Double Hydroxide-Quinclorac: A Controlled Release Purpose for Agrochemicals (2021) Journal of Polymers and the Environment, 29 (6), pp. 1817-1834. Cited 6 times
Tianyu Wang, Zijian Zhang, Zhenao Gu, Chengzhi Hu, Jiuhui Qu. Electron Transfer of Activated Carbon to Anode Excites and Regulates Desalination in Flow Electrode Capacitive Deionization. Environmental Science & Technology 2023, 57 (6) , 2566 2574. https://doi.org/10.1021/acs.est.2c09506
Longqian Xu, Shuai Peng, Liang Tang, Yang Zong, Yunfeng Mao, Minghong Wu, Deli Wu. Core–Shell Fe3O4@C Conductive Additives for Magnetic Flow-Electrode Capacitive Deionization: Reconstruction of Charge Percolation Networks. ACS ES&T Engineering 2023, 3 (1) , 94-104. https://doi.org/10.1021/acsestengg.2c00254
Rais, N.S.M., Isa, I.M., Hashim, N., Saidin, M.I., Yazid, S.N.A.M., Ahmad, M.S., Zainul, R., Suyanta, Mukdasai, S. Simultaneously determination of bisphenol A and uric acid by zinc/aluminum-layered double hydroxide-2-(2,4-dichlorophenoxy) propionate paste electrode (2019) International Journal of Electrochemical Science, 14 (8), pp. 7911-7924. Cited 4 times.
Tsung‐Han Huang, Xin‐Yuan Tian, Yi‐Yun Chen, Januar Widakdo, Hannah Faye M. Austria, Owen Setiawan, T. M. Subrahmanya, Wei‐Song Hung, Da‐Ming Wang, Ching‐Yuan Chang, Chih‐Feng Wang, Chien‐Chieh Hu, Chia‐Her Lin, Yu‐Lun Lai, Kueir‐Rarn Lee, Juin‐Yih Lai. Multifunctional Phra Phrom‐like Graphene‐Based Membrane for Environmental Remediation and Resources Regeneration. Advanced Functional Materials 2023, 65 https://doi.org/10.1002/adfm.202308321
Zainul, R., Hashim, N., Yazid, S.N.A.M., Sharif, S.N.M., Ahmad, M.S., Saidin, M.I., Suyanta, Sobry, M.M.C., Isa, I.M. Magnesium layered hydroxide-3-(4-methoxyphenyl) propionate modified single-walled carbon nanotubes as sensor for simultaneous determination of Bisphenol A and Uric Acid (2021) International Journal of Electrochemical Science, 16, art. no. 210941, pp. 1-12. Cited 3 times.
, S., Abdurrohman, A., Nurhilal, O., Suhendi, N. . and Hidayat, D. (2022) “Performance of Sediment Microbial Fuel Cell (SMFC) System using Carbon Fiber Electrodes”, EKSAKTA: Berkala Ilmiah Bidang MIPA, 23(04), pp. 322-328. doi: 10.24036/eksakta/vol23-iss04/366.
Jie Ma, Chunxiao Zhai, Fei Yu. Review of flow electrode capacitive deionization technology: Research progress and future challenges. Desalination 2023, 564 , 116701. https://doi.org/10.1016/j.desal.2023.116701
Wenquan Wang, Feng Cheng, Wanshi Zhang, Xiuwei Li. Biochar Made into Efficient Electrodes for Capacitive Deionization. Journal of Physics: Conference Series 2023, 2520 (1) , 012010. https://doi.org/10.1088/1742-6596/2520/1/012010
Jihun Lim, Yong-Uk Shin, Aseom Son, Seok Won Hong, Seungkwan Hong. TiO2 nanotube electrode for organic degradation coupled with flow-electrode capacitive deionization for brackish water desalination. npj Clean Water 2022, 5 (1) https://doi.org/10.1038/s41545-022-00150-9
Rahmawati, F., Heliani, K.R., Wijayanta, A.T., Zainul, R., Wijaya, K., Miyazaki, T., Miyawaki, J. Alkaline leaching-carbon from sugarcane solid waste for screen-printed carbon electrode (2023) Chemical Papers, 77 (6), pp. 3399-3411.
Lestari, I., Ramadhanty, Y., Marlinda, L. . and Ngatijo, N. (2021) “Preparation and Characterization of Magnetite Fe3O4-Activated Carbon Composite as Adsorbent Cr(VI) Ion ”, EKSAKTA: Berkala Ilmiah Bidang MIPA, 22(4), pp. 238-247. doi: 10.24036/eksakta/vol22-iss4/284.
Clare Bales, Changyong Zhang, T. David Waite. Membrane-based electrochemical technologies: I. Membrane capacitive deionization and flow-electrode capacitive deionization. 2022, 317-360. https://doi.org/10.1016/B978-0-12-824470-8.00002-4
Zainul, R., Azis, N.A., Isa, I.M., Hashim, N., Ahmad, M.S., Saidin, M.I., Mukdasai, S. Zinc/aluminium–quinclorac layered nanocomposite modified multi-walled carbon nanotube paste electrode for electrochemical determination of bisphenol A (2019) Sensors (Switzerland), 19 (4), art. no. 941, . Cited 14 times.
Calvin He, Boyue Lian, Jinxing Ma, Changyong Zhang, Yuan Wang, Hengliang Mo, T. David Waite. Scale-up and Modelling of Flow-electrode CDI Using Tubular Electrodes. Water Research 2021, 203 , 117498. https://doi.org/10.1016/j.watres.2021.117498
Lu Guo, Yang Shang, Guangzhao Wang, Jun Jin, Zhi Yi Leong, Shaozhuan Huang, Chengding Gu, Meng Ding, Mei Er Pam, Sareh Vafakhah, Xue Liang Li, Shengyuan A. Yang, Hui Ying Yang. A membrane-less desalination battery with ultrahigh energy efficiency. Journal of Materials Chemistry A 2021, 9 (11) , 7216-7226. https://doi.org/10.1039/D0TA12547D