Interaction of Linolenic Acid from Papaya Plant (Carica Papaya) on Peroxome Proliferator-Actived Receptor Delta as Colorectal Cancer Cell Inhibitor

https://doi.org/10.24036/sainstek/vol2-iss02/30

Authors

  • Azril Azril Department of Biomedical Engineering, National Cheng Kung University, Tainan City
  • Alifah Humaira Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Indonesia
  • Rismi Verawati Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Indonesia
  • Mohd Zaki Sukor Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA Johor Branch , Pasir Gudang Campus, Bandar Seri Alam, Malaysia
  • Faza Saiqur Rahmah Department of Medicine, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Indonesia
  • Raissa Azarine Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
  • Herland Satriawan Institute of Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia

Keywords:

Linolenic Acid, Papaya Plant (Carica papaya), Peroxisome Proliferator, Activated Receptor Delta (PPAR-δ), Colorectal Cancer Cell Inhibition, Lepinski Rule of Five

Abstract

This study examines the interaction of linolenic acid from the papaya plant (Carica papaya) on peroxisome proliferator-activated receptor delta (PPAR-δ) as an inhibitor of colorectal cancer cells. The research methodology involved computational modeling and simulation using Pymol, Pyrex, and Protein Plus. With Pymol and Pyrex, the binding affinity of linolenic acid to PPAR-δ was obtained with values of -6.9, -6.8, and -6.7, and Root Mean Square Deviation (RMSD) with values of 0, 1.18, and 1.318. Protein Plus results indicate an interaction between linolenic acid and PPAR-δ. This study also took into account the Lepinski Rule of Five to predict the bioavailability of linolenic acid in biological systems. The parameters include molecular mass 249, hydrogen bond donor 1, hydrogen bond receiver 2, log P 0.8005, and molar reactivity 64.0568. The results of this study indicate the potential of linolenic acid from papaya plants as a PPAR-δ inhibitor in the treatment of colorectal cancer.

References

. Mármol, I., Sánchez-de-Diego, C., Pradilla Dieste, A., Mármol, I., Sánchez-de-Diego, C., Pradilla Dieste, A., Cerrada, E., & Rodriguez Yoldi, M. J., "Colorectal carcinoma: a general overview and future perspectives in colorectal cancer," International Journal of Molecular Sciences, 2017, 18(1), 197.

. Marley, A. R., & Nan, H., "Epidemiology of colorectal cancer," International Journal of Molecular Epidemiology and Genetics, 2016, 7(3), 105.

. Arvelo, F., Sojo, F., & Cotte, C., "Biology of colorectal cancer," Ecancermedicalscience, 2015, 9.

. Ghosh, S., Saha, M., Bandyopadhyay, P. K., & Jana, M., "Extraction, isolation and characterization of bioactive compounds from chloroform extract of Carica papaya seed and it's in vivo antibacterial potentiality in Channa punctatus against Klebsiella PKBSG14," Microbial Pathogenesis, 2017, 111, 508-518.

. Agada, R., Thagriki, D., Lydia, D. E., Khusro, A., Alkahtani, J., Al Shaqha, M. M., ... & Elshikh, M. S., "Antioxidant and anti-diabetic activities of bioactive fractions of Carica papaya seeds extract," Journal of King Saud University-Science, 2021, 33(2), 101342.

. Gnanamangai, B. M., Ramachandran, G., Maruthupandy, M., Priya, V. M., Karthikeyan, G., Mothana, R. A., ... & Nasr, F. A., "Bioactive compounds coated 2D scaffold from seeds of Carica papaya for bacterial and parasitic skin infections," Physiological and Molecular Plant Pathology, 2022, 117, 101778.

. Wang, S. C., Sun, H. L., Hsu, Y. H., Liu, S. H., Lii, C. K., Tsai, C. H., ... & Li, C. C., "α-Linolenic acid inhibits the migration of human triple-negative breast cancer cells by attenuating Twist1 expression and suppressing Twist1-mediated epithelial-mesenchymal transition," Biochemical Pharmacology, 2020, 180, 114152.

. Chiu, C. F., Hsu, M. I., Yeh, H. Y., Park, J. M., Shen, Y. S., Tung, T. H., ... & Huang, S. Y., "Eicosapentaenoic acid inhibits KRAS mutant pancreatic cancer cell growth by suppressing hepassocin expression and STAT3 phosphorylation," Biomolecules, 2021, 11(3), 370.

. Strosznajder, A. K., Wójtowicz, S., Jeżyna, M. J., Sun, G. Y., & Strosznajder, J. B., "Recent Insights on the Role of PPAR-β/δ in Neuroinflammation and Neurodegeneration, and Its Potential Target for Therapy," Neuromolecular Medicine, 2021, 23, 86-98.

. Wang, C. Y., Chao, Y. J., Chen, Y. L., Wang, T. W., Phan, N. N., Hsu, H. P., ... & Lai, M. D., "Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer," International Journal of Medical Sciences, 2021, 18(1), 256.

. Altinoz, M. A., Bilir, A., & Elmaci, İ., "Erucic acid, a component of Lorenzo's oil and PPAR-δ ligand modifies C6 glioma growth and toxicity of doxorubicin. Experimental data and a comprehensive literature analysis," Chemico-Biological Interactions, 2018, 294, 107-117.

. Seiri, P., Abi, A., & Soukhtanloo, M., "PPAR‐γ: Its ligand and its regulation by microRNAs," Journal of Cellular Biochemistry, 2019, 120(7), 10893-10908.

. Annie-Mathew, A. S., Prem-Santhosh, S., Jayasuriya, R., Ganesh, G., Ramkumar, K. M., & Sarada, D. V. L., "The pivotal role of Nrf2 activators in adipocyte biology," Pharmacological Research, 2021, 173, 105853.

. Ding, Y., Wang, Y., Li, C., Zhang, Y., Hu, S., Gao, J., ... & An, H., "α-Linolenic acid attenuates pseudo-allergic reactions by inhibiting Lyn kinase activity," Phytomedicine, 2021, 80, 153391.

. Rahman, A. T., Jethro, A., Santoso, P., Kharisma, V. D., Murtadlo, A. A. A., Purnamasari, D., ... & Sari, D. A. P., "In Silico Study of the Potential of Endemic Sumatra Wild Turmeric Rhizomes (Curcuma Sumatrana: Zingiberaceae) As Anti-Cancer," Pharmacognosy Journal, 2022, 14(6).

. Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A., "Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts," Plants, 2017, 6(4), 42.

. Monsalve-Bustamante, Y., Rincón-Valencia, S., Mejía-Giraldo, J., Moreno-Tirado, D., & Puertas-Mejía, M., "Screening of the UV absorption capacity, proximal and chemical characterization of extracts, and polysaccharide fractions of the Gracilariopsis tenuifrons cultivated in Colombia," Journal of Applied Pharmaceutical Science, 2019, 9(10), 103-109.

. Rabaan, A. A., Halwani, M. A., Aljeldah, M., Al Shammari, B. R., Garout, M., Aldali, J., ... & Alsayyah, A., "Exploration of potent antiviral phytomedicines from Lauraceae family plants against SARS-CoV-2 RNA-dependent RNA polymerase," Journal of Biomolecular Structure and Dynamics, 2023, 1-21.

. Murtadlo, A. A. A., Listiyani, P., Utami, S. L., Wahyuningsih, S., Turista, D. D. R., Wiguna, A., ... & Ullah, M. E., "Molecular Docking Study of Nigella sativa Bioactive Compound as E6 Inhibitor Against Human Papillomavirus (HPV) Infection," SAINSTEK International Journal on Applied Science, Advanced Technology and Informatics, 2022, 1(02), 32-38.

. Rosalina, L., Purnamasari, D., Verawati, R., Suryani, O., Ghifari, M. A., Putri, A., ... & Ansori, A. N. M., "In Silico Study on the Inhibition of Sitogluside from Clove Plant (Syzygium aromaticum) on Interleukin 2 in B and T Cell Proliferation," Pharmacognosy Journal, 2023, 15(4).

. Kharisma, V. D., Ansori, A. N. M., Dian, F. A., Rizky, W. C., Dings, T. G. A., Zainul, R., & Nugraha, A. P., "Molecular Docking And Dynamic Simulation Of Entry Inhibitor From Tamarindus Indica Bioactive Compounds Against Sars-Cov-2 Infection Via Viroinformatics Study," Biochemical and Cellular Archives, 2021, 21(2), 3323-3327.

. Islamiati, Y., Suryani, Y., Adawiyah, A., Taufiqurrohman, O., Kharisma, V. D., Purnamasari, D., ... & Albari, M. T., "The Potential of Antivirus Compounds in Gletang (Tridax procumbens Linn.) in Inhibiting 3CLpro Receptor of SARS-CoV-2 Virus by In Silico," Pharmacognosy Journal, 2022, 14(6).

. Ullah, M. E., Probojati, R. T., Murtadlo, A. A. A., Tamam, M. B., & Naw, S. W., "Revealing of Antiinflammatory Agent from Zingiber officinale var. Roscoe via IKK-B Inhibitor Mechanism through In Silico Simulation," SAINSTEK International Journal on Applied Science, Advanced Technology and Informatics, 2022, 1(01), 14-19.

. Mawaddani, N., Sutiyanti, E., Widyananda, M. H., Kharisma, V. D., Turista, D. D. R., Tamam, M. B., ... & Zainul, R., "In Silico Study of Entry Inhibitor from Moringa oleifera Bioactive Compounds against SARS-CoV-2 Infection," Pharmacognosy Journal, 2022, 14(5).

. Lin, X., Li, X., & Lin, X., "A review on applications of computational methods in drug screening and design," Molecules, 2020, 25(6), 1–17.

. Dibha, A. F., Wahyuningsih, S., Kharisma, V. D., Ansori, A. N. M., Widyananda, M. H., Parikesit, A. A., ... & Zainul, R., "Biological activity of kencur (Kaempferia galanga L.) against SARS-CoV-2 main protease: In silico study," International Journal of Health Sciences, 2022, 6(S1), 468-480.

. Patel, H., & Kukol, A., "Integrating molecular modelling methods to advance influenza A virus drug discovery," Drug Discovery Today, 2021, 26(2), 503–510.

. Aini, N. S., Kharisma, V. D., Widyananda, M. H., Ali Murtadlo, A. A., Probojati, R. T., Rahma Turista, D. D., ... & Maahury, M. F., "Bioactive Compounds from Purslane (Portulaca oleracea L.) and Star Anise (Illicium verum Hook) as SARS-CoV-2 Antiviral Agent via Dual Inhibitor Mechanism: In Silico Approach," Pharmacognosy Journal, 2022, 14(4).

. Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D., "ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties," Nucleic Acids Research, 2021, 49(W1), W5–W14.

. Lemkul, J., "From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1.0]," Living Journal of Computational Molecular Science, 2019, 1(1), 1–53.

. Ansori, A. N. M., Kharisma, V. D., Parikesit, A. A., Dian, F. A., Probojati, R. T., Rebezov, M., ... & Zainul, R., "Bioactive compounds from mangosteen (Garcinia mangostana L.) as an antiviral agent via dual inhibitor mechanism against SARSCoV-2: an in silico approach," Pharmacognosy Journal, 2022, 14(1).

. Probojati, R. T., Utami, S. L., Turista, D. D. R., Wiguna, A., Listiyani, P., Wijayanti, A., ... & Naw, S. W., "Revealing of Anti-inflammatory Agent from Garcinia mangostana L. Phytochemical as NF-κB Inhibitor Mechanism through In Silico Study," SAINSTEK International Journal on Applied Science, Advanced Technology and Informatics, 2022, 1(02), 54-61.

. Kahremany, S., Livne, A., Gruzman, A., Senderowitz, H., & Sasson, S., "Activation of PPAR δ: from computer modelling to biological effects," British Journal of Pharmacology, 2015, 172(3), 754-770.

. Gangwal, R. P., Damre, M. V., Das, N. R., Sharma, S. S., & Sangamwar, A. T., "Biological evaluation and structural insights for design of subtype-selective peroxisome proliferator activated receptor-α (PPAR-α) agonists," Bioorganic & Medicinal Chemistry Letters, 2015, 25(2), 270-275.

. Burki, S., Burki, Z. G., Ahmed, I., Jahan, N., Owais, F., Tahir, N., & Khan, M., "GC/MS assisted phytochemical analysis of Ajuga parviflora leaves extract along with anti-hepatotoxic effect against anti-tubercular drug induced liver toxicity in rat," Pakistan Journal of Pharmaceutical Sciences, 2020, 33.

. Zainul, R., Verawati, R., Rita, R. S., Ranuharja, F., Ghufron, M., Samala, A. D., ... & Ansori, A. N. M., "Computational Evaluation of the Potential of Salicylate Compound from Syzygium aromaticum on Carbonic Anhydrase I as a Gastric Acid Stimulant," Pharmacognosy Journal, 2023, 15(4).

. Poon, K., Alam, M., Karatayev, O., Barson, J. R., & Leibowitz, S. F., "Regulation of the orexigenic neuropeptide, enkephalin, by PPAR δ and fatty acids in neurons of the hypothalamus and forebrain," Journal of Neurochemistry, 2015, 135(5), 918-931.

. Chen, X., Li, H., Tian, L., Li, Q., Luo, J., & Zhang, Y., "Analysis of the physicochemical properties of acaricides based on Lipinski's rule of five," Journal of Computational Biology, 2020, 27(9), 1397-1406.

. Ivanović, V., Rančić, M., Arsić, B., & Pavlović, A., "Lipinski’s rule of five, famous extensions and famous exceptions," Popular Scientific Article, 2020, 3(1), 171-177.

. Hou, C., Zhang, W., Li, J., Du, L., Lv, O., Zhao, S., & Li, J., "Beneficial effects of pomegranate on lipid metabolism in metabolic disorders," Molecular Nutrition & Food Research, 2019, 63(16), 1800773.

. Beyaz, S., & Yilmaz, Ö. H., "Molecular pathways: dietary regulation of stemness and tumor initiation by the PPAR-δ pathway," Clinical Cancer Research, 2016, 22(23), 5636-5641.

. Liu, Y., Colby, J. K., Zuo, X., Jaoude, J., Wei, D., & Shureiqi, I., "The role of PPAR-δ in metabolism, inflammation, and cancer: many characters of a critical transcription factor," International Journal of Molecular Sciences, 2018, 19(11), 3339.

. Wang, Z., Dong, H., Li, W., Han, F., & Zhao, L., "PPAR-δ as a prognostic biomarker and its association with immune infiltrates in breast cancer PPAR-δ as a prognostic biomarker and its association with immune infiltrates in breast cancer," Journal of Cancer, 2023, 14(6), 1049.

. Punia, S., Sandhu, K. S., Siroha, A. K., & Dhull, S. B., "Omega 3-metabolism, absorption, bioavailability and health benefits–A review," PharmaNutrition, 2019, 10, 100162.

. Liu, N., Li, D., Wang, W., Hollmann, F., Xu, L., Ma, Y., ... & Wang, Y., "Production and immobilization of lipase PCL and its application in synthesis of α‐linolenic acid‐rich diacylglycerol," Journal of Food Biochemistry, 2018, 42(5), e12574.

. Dhar Dubey, K. K., Sharma, G., & Kumar, A., "Conjugated linolenic acids: implication in cancer," Journal of Agricultural and Food Chemistry, 2019, 67(22), 6091-6101.

. Xu, Y., Yang, X., Zhao, P., Yang, Z., Yan, C., Guo, B., & Qian, S. Y., "Knockdown of delta-5-desaturase promotes the anti-cancer activity of dihomo-γ-linolenic acid and enhances the efficacy of chemotherapy in colon cancer cells expressing COX-2," Free Radical Biology and Medicine, 2016, 96, 67-77.

. Altinoz, M. A., Bilir, A., & Elmaci, İ., "Erucic acid, a component of Lorenzo's oil and PPAR-δ ligand modifies C6 glioma growth and toxicity of doxorubicin," Chemico-Biological Interactions, 2018, 294, 107-117.

. Wang, Z., Dong, H., Li, W., Han, F., & Zhao, L., "PPAR-δ as a prognostic biomarker and its association with immune infiltrates in breast cancer," Journal of Cancer, 2023, 14(6), 1049.

. Xiao, L., & Wang, N., "PPAR-δ: A key nuclear receptor in vascular function and remodeling," Journal of Molecular and Cellular Cardiology, 2022, 169, 1-9.

. Maruthanila, V. L., Elancheran, R., & Mirunalini, S., "In silico approach and molecular docking studies of potent bioactive compounds of Carica papaya as anti-breast cancer agents," Current Computer-Aided Drug Design, 2022, 18(3), 196-212.

. Chan, C. Y., & Tan, S. A., "Molecular Docking of Papaya Bioactives against Keap1, the Inhibitor of Nrf-2," Current Trends in Biotechnology & Pharmacy, 2020.

. Khan, S. L., Siddiqui, F. A., Jain, S. P., & Sonwane, G. M., "Discovery of potential inhibitors of SARS-CoV-2 (COVID-19) Main Protease (Mpro) from Nigella Sativa (black seed) by molecular docking study," Coronaviruses, 2021, 2(3), 384-402.

Published

2023-12-30

How to Cite

Azril, A., Humaira, A., Verawati, R., Sukor , M. Z. ., Rahmah, F. S. ., Azarine, R. ., & Satriawan, H. (2023). Interaction of Linolenic Acid from Papaya Plant (Carica Papaya) on Peroxome Proliferator-Actived Receptor Delta as Colorectal Cancer Cell Inhibitor. SAINSTEK International Journal on Applied Science, Advanced Technology and Informatics, 2(02), 53–62. https://doi.org/10.24036/sainstek/vol2-iss02/30