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ABSTRACT  

This review paper provides an in-depth exploration of the advancements in the field of plasma-
enhanced chemical vapor deposition (PECVD) for the deposition of multi-walled carbon nanotubes 
(MWCNTs) on Si/SiO2 substrates. The study investigates the growth process of MWCNTs utilizing 
iron catalytic nanoparticles generated from the decomposition of Fe(CO)5. The deposition of iron 
oxide nanoparticles is accomplished through a microwave plasma torch with a dual-flow nozzle 
electrode, as previously described in the literature. The Si/SiO2 substrate is placed in a holder 
accommodating multiple samples, each with a deposition area of 4 × 4 mm. Argon serves as the 
carrier gas, with controlled flow rates through the central and outer channels. The deposition 
process is conducted for 15 seconds at a plasma power of 210 W. The resulting MWCNTs' structural 
characteristics, such as density, alignment, and uniformity, are examined. This comprehensive 
review highlights the intricate interplay of process parameters and their influence on MWCNT 
growth. The insights provided contribute to a better understanding of PECVD-based MWCNT 
synthesis and pave the way for optimizing these processes for various applications, including 
electronic and energy devices. 

Keywords: Plasma-enhanced chemical vapor deposition, Multi-walled carbon nanotubes, Si/SiO2 
substrate, Nanoparticle catalysis, Growth mechanism 

 

 

INTRODUCTION The deposition of multi-walled carbon nanotubes 
(MWCNTs) onto Si/SiO2 substrates through plasma-
enhanced chemical vapor deposition (PECVD) has 
garnered significant attention due to its potential 
applications in various fields. MWCNTs possess 
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exceptional mechanical, electrical, and thermal 
properties that make them promising candidates for 
advanced electronic devices, sensors, and energy 
storage systems. The PECVD technique offers precise 
control over the growth process and structural 
characteristics of MWCNTs, which is essential for 
tailoring their properties to specific applications. 
However, despite considerable progress, there remains 
a need to further understand the intricate interplay 
between process parameters, substrate properties, and 
catalyst materials to achieve uniform and well-aligned 
MWCNTs with optimal properties. This review aims to 
bridge the gap in the existing knowledge by 
comprehensively analyzing the recent advancements in 
PECVD-based MWCNT deposition on Si/SiO2 substrates, 

focusing on the growth mechanisms, catalyst 
nanoparticle formation, and the influence of deposition 
conditions on the resulting MWCNT structures [1]-[2]. 

The recent developments in the field of plasma-
enhanced chemical vapor deposition (PECVD) for 
depositing multi-walled carbon nanotubes (MWCNTs) 
on Si/SiO2 substrates have highlighted the significance 
of precise control over growth parameters and substrate 
interactions. Advanced techniques for catalyst 
nanoparticle formation, such as the use of iron oxide 
nanoparticles derived from Fe(CO)5 decomposition, 
have demonstrated improved control over MWCNT 
growth [3]. 
 

 

 
Figure 1. FTIR spectra of MWCNTs and M-MWCNTs. 

https://www.mdpi.com/molecules/molecules-28-01870/article_deploy/html/images/molecules-28-01870-g001-
550.jpg 

 
Moreover, strategies to enhance uniformity and 
alignment of MWCNTs through improved carrier gas 
flow control, substrate preparation, and optimized 
plasma power have been explored. The characterization 
of resulting MWCNT structures, including density, 
alignment, and uniformity, has been a focal point of 
recent research, leading to valuable insights into 
tailoring MWCNT properties for specific applications. 
The integration of MWCNTs into electronic devices, 
sensors, and energy storage systems remains a driving 
force, emphasizing the need for continued 
advancements in PECVD techniques to meet the 
demands of emerging technologies. This state-of-the-art 
understanding underscores the importance of exploring 
novel catalyst materials, optimizing deposition 
conditions, and gaining insights into the growth 
mechanisms of MWCNTs on Si/SiO2 substrates [4]-[6]. 

The novelty of this research lies in the comprehensive 
exploration of plasma-enhanced chemical vapor 
deposition (PECVD) techniques for the controlled 
deposition of multi-walled carbon nanotubes (MWCNTs) 
on Si/SiO2 substrates. By focusing on the intricate 
interplay between process parameters, substrate 
properties, and catalyst materials, this study contributes 
to an improved understanding of the growth 
mechanisms and structural characteristics of MWCNTs 
[20]-[24]. Additionally, the utilization of iron oxide 
nanoparticles as catalysts, derived from Fe(CO)5 
decomposition, offers a novel approach to enhance 
MWCNT growth control [7]-[8]. 

 

 

https://www.mdpi.com/molecules/molecules-28-01870/article_deploy/html/images/molecules-28-01870-g001-550.jpg
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Figure 2. Ultrasound-assisted multiple-wall carbon nanotube (MWCNT) modification process with citric acid and 

oxalic acid. 
https://www.mdpi.com/materials/materials-14-00072/article_deploy/html/images/materials-14-00072-g001-

550.jpg 
 

The optimization of carrier gas flow rates, substrate 
preparation, and plasma power allows for the 
production of uniform and aligned MWCNT structures, 
which are crucial for various applications. The ultimate 
goal of this research is to advance the knowledge and 
techniques related to PECVD-based MWCNT deposition, 
facilitating their integration into electronic devices, 
sensors, and energy storage systems with tailored 
properties and enhanced performance [9]. 

METHODS 

Research Methods 

Preparation of Substrates and Nanoparticle Deposition : 
Si/SiO2 substrates were meticulously prepared to 
ensure cleanliness and uniformity. The substrates were 
then placed within a specialized holder designed to 
accommodate up to four samples simultaneously. Iron 
oxide nanoparticles, crucial for initiating the growth of 
multi-walled carbon nanotubes (MWCNTs), were 
deposited onto the substrates using a microwave 
plasma torch featuring a dual-flow nozzle electrode. This 
methodology allowed for controlled nanoparticle 
formation through the decomposition of Fe(CO)5 [10]-
[11]. 

 

 
Figure 3. The differences in the vibrational entropy changes upon DES formation are consistent with the trend in 

the overall entropy changes upon DES formation. 
https://pubs.acs.org/cms/10.1021/acs.jpcb.6b04750/asset/images/medium/jp-2016-04750s_0008.gif 

 
The choice of argon gas as the carrier gas was based on 
its inert nature, preventing undesirable reactions during 
nanoparticle deposition. Flow rates of 700 and 28 sccm 
were respectively maintained through the central and 
outer channels, with the outer channel facilitating the 
introduction of Fe(CO)5 vapors. Detailed insights into 
this nanoparticle deposition technique can be found 
[12]. 

Standart and Procedur 

Multi-Walled Carbon Nanotube (MWCNT) Deposition 
via PECVD. The deposition of MWCNTs on Si/SiO2 
substrates was conducted through plasma-enhanced 
chemical vapor deposition (PECVD) technique. The 
prepared substrates were loaded into a controlled 

https://www.mdpi.com/materials/materials-14-00072/article_deploy/html/images/materials-14-00072-g001-550.jpg
https://www.mdpi.com/materials/materials-14-00072/article_deploy/html/images/materials-14-00072-g001-550.jpg
https://pubs.acs.org/cms/10.1021/acs.jpcb.6b04750/asset/images/medium/jp-2016-04750s_0008.gif
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environment chamber to prevent contamination. The 
PECVD process was initiated by introducing ethyl 
carbonate and propylene carbonate (EC:PC, 9:1, v/v) 
mixed with 1.0 mol L−1 NaPF6 as the electrolyte. The 
mixture was introduced into the chamber and 
underwent PECVD under controlled conditions. The 
plasma power, deposition time, and gas flow rates were 

maintained at 210 W, 15 seconds, 700 sccm for central 
channel, and 28 sccm for the outer channel, 
respectively. This established protocol enabled the 
controlled growth of MWCNTs on the iron oxide 
nanoparticles [13]-[15]. 

 

 

 
Figure 4. XRD diffractograms for pristine and calcined f-MWCNT 

https://www.mdpi.com/materials/materials-15-00977/article_deploy/html/images/materials-15-00977-g001-
550.jpg 

 

The synthesized MWCNTs were subjected to 
comprehensive structural characterization to evaluate 
their density, alignment, and uniformity. Scanning 
electron microscopy (SEM) was employed to visualize 
the morphological characteristics of the grown 
MWCNTs, allowing assessment of their alignment and 
distribution. Raman spectroscopy was used to analyze 

the vibrational properties of the MWCNTs, providing 
insights into their structural integrity and quality. The 
results obtained from these characterization techniques 
were interpreted to understand the effects of varying 
deposition parameters on the final MWCNT structures 
[16] 

 

 

 
Figure 5. Noncovalent interactions (NCIs) have long interested a vast community of chemists who investigated 

their “canonical categories” derived from descriptive crystallography. 
https://pubs.acs.org/cms/10.1021/acs.accounts.1c00393/asset/images/medium/ar1c00393_0016.gif 
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The collected SEM images and Raman spectra were 
processed using specialized software to quantify 
parameters such as MWCNT density, alignment degree, 
and quality. Statistical analysis was performed to 
validate the consistency of the experimental results. The 
relationship between deposition conditions and 
MWCNT structural attributes was elucidated through 
the interpretation of the processed data. The correlation 
between parameters such as plasma power, deposition 
time, and resulting MWCNT morphology was 
established, shedding light on the optimal conditions for 
controlled growth. This systematic approach provided 
insights into the interplay between deposition 
parameters and MWCNT structural characteristics, 

contributing to a better understanding of PECVD-based 
MWCNT growth [17]-[18]. 

Data Collection Technique 

Data collection for this research involved the utilization 
of advanced characterization techniques to assess the 
structural attributes of the synthesized multi-walled 
carbon nanotubes (MWCNTs). Scanning electron 
microscopy (SEM) was employed to capture high-
resolution images of the MWCNTs' surface morphology, 
enabling the observation of their alignment, density, 
and distribution [19] 
 

 

 
Figure 6. Scheme of the procedure to produce and analyze the dispersion of MWCNTs dissolved in type 1 water, 

varying the molarity of the surfactant between 10 mM and 100 mM 
https://www.mdpi.com/materials/materials-15-09035/article_deploy/html/images/materials-15-09035-g001-

550.jpg 
 

Additionally, Raman spectroscopy was employed to 
acquire vibrational spectra of the MWCNTs, which 
provided valuable insights into their crystalline 
structure, quality, and defects. These data collection 
techniques offered a comprehensive understanding of 
the MWCNT growth process and allowed for the 
correlation of deposition parameters with resulting 
structural characteristics [20] 

 
 

Data Interpretation Technique 

The interpretation of acquired data in this research was 
executed through a systematic approach that integrated 
insights from scanning electron microscopy (SEM) and 
Raman spectroscopy analyses.The SEM images were 
meticulously examined to discern the alignment, 
density, and uniformity of the grown multi-walled 
carbon nanotubes (MWCNTs). These visual observations 
were coupled with quantitative analysis to derive key 

https://www.mdpi.com/materials/materials-15-09035/article_deploy/html/images/materials-15-09035-g001-550.jpg
https://www.mdpi.com/materials/materials-15-09035/article_deploy/html/images/materials-15-09035-g001-550.jpg
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structural parameters. Additionally, Raman 
spectroscopy data were analyzed to identify 
characteristic peaks corresponding to MWCNT 
vibrational modes, aiding in assessing their crystalline 
structure and quality. By cross-referencing SEM and 
Raman results, a comprehensive understanding of the 

relationships between deposition parameters and 
MWCNT structural attributes was established, thus 
providing a basis for optimizing the plasma-enhanced 
chemical vapor deposition (PECVD) process for 
controlled MWCNT growth [21]-[22]. 
 

 

 
Figure 7. A schematic representation of the experimental setup. 

https://www.mdpi.com/materials/materials-14-03161/article_deploy/html/images/materials-14-03161-g001-
550.jpg 

 

RESULT AND DISCUSSION 

Analysis 

Controlled Growth of MWCNTs. The research's primary 
focus on the controlled deposition of multi-walled 
carbon nanotubes (MWCNTs) on Si/SiO2 substrates 
through plasma-enhanced chemical vapor deposition 
(PECVD) highlights its significance for tailored 
nanomaterial synthesis. The utilization of iron oxide 
nanoparticles as catalysts, derived from Fe(CO)5 
decomposition, presents a novel approach to enhance 
MWCNT growth control. The optimized carrier gas flow 
rates, substrate preparation, and plasma power 
contribute to the production of uniform and aligned 
MWCNT structures, which are pivotal for numerous 
applications in electronics and energy storage systems 
[23]. 

The integration of scanning electron microscopy (SEM) 
and Raman spectroscopy for structural characterization 
provided comprehensive insights into the synthesized 
MWCNTs. SEM images allowed the assessment of the 
MWCNT alignment, density, and distribution, enhancing 
the understanding of their morphology. Additionally, 
Raman spectroscopy data enabled the analysis of 
vibrational spectra, revealing details about the 
crystalline structure, quality, and potential defects in the 

grown MWCNTs. These analyses facilitated the 
establishment of correlations between deposition 
parameters and structural attributes, enabling the 
identification of optimal conditions for controlled 
MWCNT growth [24]-[26]. 

The findings of this research hold significant implications 
for various nanomaterial applications. Controlled 
MWCNT growth techniques are essential for tailoring 
the properties of nanomaterials to meet specific 
requirements in electronic devices, sensors, and energy 
storage systems. The exploration of advanced catalys 
materials and optimized deposition conditions opens 
avenues for enhancing the performance of these 
applications. Moreover, the comprehensive analysis of 
the relationships between deposition parameters and 
MWCNT structural attributes contributes to a better 
understanding of plasma-enhanced chemical vapor 
deposition processes, facilitating their utilization in 
various emerging technologies [27]-[28]. 

The research sheds light on the enhanced control 
achieved in the growth of multi-walled carbon 
nanotubes (MWCNTs) through plasma-enhanced 
chemical vapor deposition (PECVD).The utilization of 
iron oxide nanoparticles, synthesized from the 
decomposition of Fe(CO)5, as catalysts for MWCNT 
growth represents a notable advancement.This 

https://www.mdpi.com/materials/materials-14-03161/article_deploy/html/images/materials-14-03161-g001-550.jpg
https://www.mdpi.com/materials/materials-14-03161/article_deploy/html/images/materials-14-03161-g001-550.jpg
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approach allows for precise manipulation of deposition 
conditions to attain uniform and aligned MWCNT 
structures, essential for optimizing their properties for 

specific applications. The findings highlight the potential 
of PECVD techniques in tailoring nanomaterial growth 
with improved control and efficacy [29]-[30]. 

 

 
Figure 8. presents the energy-minimized amorphous cells comprising of seven units of the membrane active layer. 

The isosurfaces depicted in blue and grey color represents the free accessible volume within the membrane 
materials at a probe radius of 0.84 Å. Connolly surface area of 20,000 and 25,000 Å2 were estimated for the NH2-

CNT (Figure 1a) and the HA-MWCNT (Figure 1b), respectively. This represents a significant enhancement on the 
solvent accessibility of HA-MWCNT. Meanwhile, the fractional free volume (FFV) estimated by the Bondi equation 

[28] resulted in values of 0.296 and 0.305 on the NH2-CNT and the HA-MWCNT systems, respectively, in 
consonant with the Connolly surface area. 

https://www.mdpi.com/molecules/molecules-28-00391/article_deploy/html/images/molecules-28-00391-g001-
550.jpg 

 
The application of scanning electron microscopy (SEM) 
and Raman spectroscopy for structural characterization 
delivers comprehensive insights into the synthesized 
MWCNTs. SEM images provide visual confirmation of 
the alignment, density, and distribution of MWCNTs on 
the substrate surface, while Raman spectra offer 
detailed information about their crystalline structure 
and quality. The structural analysis not only validates the 
success of the PECVD process but also offers a deeper 
understanding of the interplay between deposition 
parameters and resulting structural attributes. These 
insights are invaluable for refining the deposition 

process and optimizing the growth of MWCNTs with 
tailored properties. The interpretation of this research 
underscores the significant implications for 
nanotechnology applications. Controlled MWCNT 
growth techniques, as demonstrated through PECVD, 
pave the way for advanced electronic devices, sensors, 
and energy storage systems.The ability to fine-tune 
deposition parameters and manipulate catalyst 
materials opens new horizons for tailoring nanomaterial 
properties to suit diverse technological needs. The 
insights gained through this research contribute to 
advancing the understanding of MWCNT synthesis, 

https://www.mdpi.com/molecules/molecules-28-00391/article_deploy/html/images/molecules-28-00391-g001-550.jpg
https://www.mdpi.com/molecules/molecules-28-00391/article_deploy/html/images/molecules-28-00391-g001-550.jpg
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ultimately driving the development of cutting-edge 
nanomaterial-based technologies [31]-[33]. 

Compared to conventional methods of multi-walled 
carbon nanotube (MWCNT) synthesis, this research 
offers a notable advancement in the controlled 
deposition of MWCNTs on Si/SiO2 substrates via 
plasma-enhanced chemical vapor deposition (PECVD). 

While traditional techniques often lack precise control 
over nanotube alignment and density, the utilization of 
iron oxide nanoparticles as catalysts in PECVD enhances 
growth uniformity and alignment. This comparative 
advantage holds significant implications for applications 
requiring tailored nanotube structures, such as 
electronic devices and energy storage systems [34]-[35]. 
 

 

 
Figure 10. The specific capacity versus galvanostatic charge/discharge cycles at different current density values 
for the MVO-CNTs with 63 wt.% and 31 wt.% of CNTs electrodes, respectively. The MVO-CNTs electrode with 63 

wt.% of CNTs sample data are taken from the Ref. 
https://www.mdpi.com/materials/materials-16-02069/article_deploy/html/images/materials-16-02069-g001-

550.jpg 
 

The integration of scanning electron microscopy (SEM) 
and Raman spectroscopy for structural characterization 
distinguishes this research from conventional studies. By 
combining these techniques, researchers gain 
comprehensive insights into MWCNT alignment, 
density, and crystalline structure. This contrast is 
particularly relevant when compared to studies solely 
relying on SEM or Raman spectroscopy. The inclusion of 
both techniques ensures a more thorough 
understanding of MWCNT properties and their 
correlation with deposition parameters, thus advancing 
the field's knowledge on nanomaterial synthesis [36]-
[37]. 
 

In comparison to previous studies, the findings of this 
research hold significant technological implications for 
nanomaterial applications. The controlled growth of 
MWCNTs via PECVD offers a versatile approach for 
producing nanotube structures optimized for specific 
applications. This comparative advantage becomes 
evident when considering conventional growth 
techniques, which often yield less uniform and aligned 
structures. The ability to manipulate deposition 
parameters and catalyst materials showcases the 
potential to revolutionize nanotechnology applications, 
ranging from electronic devices to energy storage 
systems [38]-[40]. 
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CONCLUSION 

In conclusion, this research underscores the significance 
of plasma-enhanced chemical vapor deposition (PECVD) 
for the controlled growth of multi-walled carbon 
nanotubes (MWCNTs) on Si/SiO2 substrates. The 
utilization of iron oxide nanoparticles as catalysts 
introduces a novel approach to enhance growth 
uniformity and alignment, thereby enabling tailored 
nanotube structures. The comprehensive structural 
characterization, achieved through scanning electron 
microscopy (SEM) and Raman spectroscopy, provides in-
depth insights into MWCNT properties and their 
correlation with deposition parameters. These findings 
hold promising implications for nanomaterial 
applications, positioning PECVD as a pivotal technique 
for advancing nanotechnology and facilitating the 
development of high-performance electronic devices 
and energy storage systems. 
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